Let f:[a,∞)→[a,∞) be defined by f(x)=x2−2ax+a(a+1). If one of the solutions of the equation f(x)=f−1(x) is 5049, then the other solution can be
A
5051
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
5048
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
5052
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
5050
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D5050 f(x)=x2−2ax+a(a+1) ⇒(x−a)2+a,x∈[a,∞)
Let y=(x−a)2+a. Clearly, y≥a.
Thus, (x−a)2=y−a
or, x=a+√y−a ∴f−1(x)=a+√x−a
Now, f(x)=f−1(x) ⇒(x−a)2+a=a+√x−a ⇒(x−a)2=√x−a ⇒(x−a)4=x−a ⇒x=a or (x−a)3=1 ∴x=a or a+1
If a=5049, then a+1=5050.
If a+1=5049, then a=5048.