Let f:A→B be a function defined as f(x)=x−1x−2 where A=R-{2} and B=R-{1}. Then f is :
f:A→B
f(x)=x−1x−2
Let f(x)=y,x=f−1(y)
y=x−1x−2
y(x−2)=x−1
xy−2y=x−1
xy−x=−1+2y
x(y−1)=2y−1
x:=2y−1y−1
Putting the value of x in above equation
∣∣∣f−1(y)=2y−1y−1∣∣∣
option B: invertible and f−1(y)=2y−1y−1