f(x)=log{x}(x−[x]|x|)
For f to be defined,
x−[x]|x|>0, |x|≠0, {x}>0, {x}≠1⇒{x}|x|>0, x≠0, x∉Z⇒x∈R−Z
Hence, domain of f(x) is R−Z
Now, for range
f(x)=log{x}(x−[x]|x|)⇒f(x)=log{x}({x}|x|)⇒f(x)=1−log{x}|x|(∵logmn=logm−logn)
Let y=f(x)
1−y=log{x}|x|
Now, 0<{x}<1
Case 1: When |x|>1
log{x}|x|∈(−∞,0)∴−∞<1−y<0⇒−∞<1−y<0⇒1<y<∞
Case 2: When 0<x<1
{x}=|x|=x⇒log{x}|x|=1∴y=0
Case 3: When −1<x<0
{x}=x+1,|x|=−x
Now for
−12<x<0⇒12<{x}<1, 0<|x|<12
log{x}|x|∈(1,∞)
And for
−1<x<−12⇒0<{x}<12, 12<|x|<1
log{x}|x|∈(0,1)
So,
log{x}|x|∈(0,∞)⇒0<1−y<∞∴y∈(−∞,1)
Thus, from above cases we haveB=(−∞,1)∪(1,∞)
⇒R−B={1}
So, the number of integers in R−B is 1.