wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f:AR be a function defined by f(x)=log{x}(x[x]|x|), where [.] and {.} represent greatest integer function and fractional part function respectively. If B is the range of f, then the number of integer(s) in RB is

Open in App
Solution

f(x)=log{x}(x[x]|x|)
For f to be defined,
x[x]|x|>0, |x|0, {x}>0, {x}1{x}|x|>0, x0, xZxRZ
Hence, domain of f(x) is RZ

Now, for range
f(x)=log{x}(x[x]|x|)f(x)=log{x}({x}|x|)f(x)=1log{x}|x|(logmn=logmlogn)

Let y=f(x)
1y=log{x}|x|
Now, 0<{x}<1
Case 1: When |x|>1
log{x}|x|(,0)<1y<0<1y<01<y<

Case 2: When 0<x<1
{x}=|x|=xlog{x}|x|=1y=0

Case 3: When 1<x<0
{x}=x+1,|x|=x
Now for
12<x<012<{x}<1, 0<|x|<12
log{x}|x|(1,)
And for
1<x<120<{x}<12, 12<|x|<1
log{x}|x|(0,1)
So,
log{x}|x|(0,)0<1y<y(,1)

Thus, from above cases we haveB=(,1)(1,)
RB={1}

So, the number of integers in RB is 1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon