f(x)=log{x}(x−[x]|x|)
For f to be defined,
x−[x]|x|>0, |x|≠0, {x}>0, {x}≠1
⇒{x}|x|>0, x≠0, x∉Z
⇒x∈R−Z
Hence, domain of f is R−Z
Now, for range
f(x)=log{x}(x−[x]|x|)=log{x}({x}|x|)⇒f(x)=1−log{x}|x| (∵logmn=logm−logn)
Let y=f(x)
1−y=log{x}|x|
We know that
when 0<a<1,b>1
logab∈(−∞,0)∴−∞<log{x}|x|<0⇒−∞<1−y<0⇒1<y<∞∴B=(1,∞)
⇒R+−B=(0,1]
The only integer in (0,1] is 1.