wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f and g be continuous functions in [a,b] and [b,c] respectively. A function h(x) is defined as h(x)={f(x),x[a,b)g(x),x(b,c]. If f(b)=g(b), then which of the following is/are CORRECT?

A
h(x) has a removable discontinuity at x=b
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
h(x) is continuous in [a,c]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
h(b)=g(b+) and h(b+)=f(b)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
h(b+)=g(b) and h(b)=f(b+)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C h(b)=g(b+) and h(b+)=f(b)
f is continuous in [a,b] (1)
g is continuous in [b,c] (2)
f(b)=g(b) (3)
and h(x)={f(x),x[a,b)g(x),x(b,c] (4)

Limit at x=b:
L.H.L.=limxbh(x)=limxbf(x)
L.H.L.=f(b)
and R.H.L.=limxb+h(x)=limxb+g(x)
R.H.L.=g(b)
L.H.L.=R.H.L. [From (3)]
But for h(x) to be continuous,
L.H.L.=R.H.L.=h(b)
Since value of h(b) is not known,
h(x) has a removable discontinuity at x=b.


From (1) and (2), we have
f(b)=f(b) and g(b+)=g(b)
From (1),(2) and (4), we have
h(x) is continuous in [a,b)(b,c]
h(b)=f(b)=f(b)=g(b)=g(b+)=h(b+)

g(b) and f(b+) are undefined.
h(b+)=g(b+)=g(b)=f(b)=f(b)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon