Let f and g be real valued functions such that f(x+y)+f(x-y)=2f(x).g(y)∀x,yϵR. Prove that, if f(x) is not identically zero and |f(x)|≤1∀xϵR, then |g(y)|≤1∀yϵR.
Open in App
Solution
Let maximum value of f(x) be M. ⇒max|f(x)|=M, where 0<M≤1 (i)
(Since, f is not identically zero and |f(x)|≤1∀xϵR) Now, f(x+y)+f(x−y)=2f(x).g(y) ⇒|2f(x)|.|g(y)|=|f(x+y)+f(x−y)| ⇒2|f(x)|.|g(y)|≤|f(x+y)|+|f(x−y)| (as |a+b|≤|a|+|b|) ⇒2|f(x)|.|g(y)|≤M+M [Using Eq. (i), ie, max|f(x)|=M] ⇒|g(y)|≤1 for yϵR Thus, if f(x) is not identically zero and |f(x)|≤1∀xϵR then, |g(y)|≤1 for yϵR