Let f and g be real-valued functions such that f(x+y)+f(x−y)=2f(x)⋅g(y)∀x,yϵR if f is not identically zero and f|(x)|≤1,∀xϵR, then |g(y)|≤1,∀yϵR. If true enter 1 else enter 0
A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A True Let max|f(x)|=M where 0<M≤1. (Since, f is not identically zero and |f(x)|≤1∀x∈R) Now, f(x+y)+f(x−y)=2f(x).g(y) ⇒|2f(x).g(y)|=|f(x+y)+f(x−y)| ⇒|2f(x)|.|g(y)|≤|f(x+y)|+|f(x−y)|≤M+M ⇒2|f(x)||g(y)|≤2M ⇒|g(y)|≤1 for y∈R