wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f be a biquadratic function of x given by f(x)=Ax4+Bx3+Cx2+Dx+E, where A,B,C,D,ER and A0. If limx0(f(x)2x3)1x=e3, then

A
A+4B=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
A3B=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
f(1)=8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
f(1)=30
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

Given:

f(x)=Ax4+Bx3+Cx2+Dx+E and A,B,C,D,ER, A0.

limx0(f(x)2x3)1x=e3

limx0(A(x)4+B(x)3+C(x)2+D(x)+E2(x)3)1x=e3
limx0(Ax4Bx3+Cx2Dx+E2x3)1x=e3

limx0 (Ax2B2+C2xD2x2+E2x3)1x=e3---(i)

Since, limx0(1xn)1x=0

i.e., in (i) for given limit to be finite,
C=D=E=0---(1)
Also, B2=1B=2(2)
limx0(Ax4+2x32x3)1x=e3
limx0(1+Ax2)1x=e3
limx0Ax21x=3
A2=3A=6(3)

Option A,

A+4B=6+4(2)=68=140

Option B,

A3B=63(2)=0

Now, substitute the values in f(x),

f(x)=Ax4+Bx3+Cx2+Dx+E

f(x)=6x42x3+0x2+0x+0

f(x)=6x42x3

f(1)=6(1)42(1)3=8

f(x)=24x36x

f(1)=24(1)36(1)=30---Option D

Hence, Option B and Option D are correct.


flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Indeterminant Forms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon