Let f be a biquadratic function of x given by f(x)=Ax4+Bx3+Cx2+Dx+E, where A,B,C,D,E∈R and A≠0. If limx→0(f(−x)2x3)1x=e−3, then
Given:
f(x)=Ax4+Bx3+Cx2+Dx+E and A,B,C,D,E∈R, A≠0.
limx→0(f(−x)2x3)1x=e−3
⇒limx→0(A(−x)4+B(−x)3+C(−x)2+D(−x)+E2(x)3)1x=e−3
⇒limx→0(Ax4−Bx3+Cx2−Dx+E2x3)1x=e−3
⇒limx→0 (Ax2−B2+C2x−D2x2+E2x3)1x=e−3---(i)
Since, limx→0(1xn)1x=0
i.e., in (i) for given limit to be finite,
C=D=E=0---(1)
Also, −B2=1⇒B=−2−−−(2)
∴limx→0(Ax4+2x32x3)1x=e−3
⇒limx→0(1+Ax2)1x=e−3
∴limx→0Ax2⋅1x=−3
⇒A2=−3⇒A=−6−−−(3)
Option A,
A+4B=−6+4(−2)=−6−8=−14≠0
Option B,
A−3B=−6−3(−2)=0
Now, substitute the values in f(x),
f(x)=Ax4+Bx3+Cx2+Dx+E
⇒f(x)=−6x4−2x3+0x2+0x+0
⇒f(x)=−6x4−2x3
⇒f(1)=−6(1)4−2(1)3=−8
⇒f′(x)=−24x3−6x
⇒f′(1)=−24(1)3−6(1)=−30---Option D
Hence, Option B and Option D are correct.