Let f be a biquadratic function of x given by f(x)=Ax4+Bx3+Cx2+Dx+E where A,B,C,D,E∈R and A≠0. If limx→0(f(−x)2x3)1/x=e−3, then
A
A+4B=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
A−3B=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
f(1)=8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
f′(1)=−30
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Df′(1)=−30 limx→0(f(−x)2x3)1/x=e−3⇒limx→0(Ax4−Bx3+Cx2−Dx+E2x3)1/x=e−3⇒limx→0⎛⎜
⎜
⎜
⎜⎝x3(Ax−B+Cx−Dx2+Ex3)2x3⎞⎟
⎟
⎟
⎟⎠1/x=e−3
For the existence of above limit, C=D=E=0
Also, −B2=1⇒B=−2 ∴limx→0(Ax+22)1/x(1∞ form)=e−3⇒limx→0(Ax+22−1)1x=−3⇒A2=−3⇒A=−6
So, f(x)=−6x4−2x3 ⇒f(1)=−6−2=−8 f′(x)=−24x3−6x2 ⇒f′(1)=−24−6=−30