Let f be a continuous function. If x∫0f(t)dt=ex−ce2x1∫0f(t)e−tdt, where c is a non-zero constant, then
A
f(x)=ex+2ex
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f(x)=ex−2e2x
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
c=−11+2e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
c=13−2e
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dc=13−2e x∫0f(t)dt=ex−ce2x1∫0f(t)e−tdt⋯(1)
Differentiating w.r.t. x, we get f(x)=ex−2ce2x1∫0f(t)e−tdt⋯(2)
Putting x=0 in (1), we get 0∫0f(t)dt=e0−ce01∫0f(t)e−tdt ⇒1∫0f(t)e−tdt=1c⋯(3)
From (2) and (3), we get f(x)=ex−2e2x
From (3), we have 1∫0(et−2e2t)e−tdt=1c ⇒1∫0(1−2et)dt=1c ⇒1−2(e−1)=1c ∴c=13−2e