The correct option is B ∫caf(t)dt−∫bcf(t)dt=f(c)(a+b−2c)
F(x)=(∫xaf(t)dt−∫bxf(t)dt)(2x−(a+b))
Since, f(x) is continuous on [a,b] , so F(x) is also continuous on [a,b].
Also , F(x) is differentiable on (a,b)
F(a)=−(a−b)∫baf(t)dt
⇒F(a)=(b−a)∫baf(t)dt
Also F(b)=(b−a)∫baf(t)dt
⇒F(a)=F(b)
Hence, Rolle's theorem is applicable to F(x) on [a,b], so there exists c∈ (a,b) such that
F′(c)=0
Now , F′(x)=2(∫xaf(t)dt−∫bxf(t)dt)+(2x−(a+b))(f(x)+f(x))=0
⇒2(∫caf(t)dt−∫bxf(t)dt)+2f(c)(2c−(a+b))=0
⇒∫caf(t)dt−∫bcf(t)dt=f(c)(a+b−2c)