x∫0f(t)dt+x∫0tf(x−t)dt=e−x−1
⇒x∫0f(t)dt+x∫0(x−t)f(t)dt=e−x−1
⇒xx∫0f(t)dt+x∫0f(t)(1−t)dt=e−x−1
Differentiating w.r.t. x,
x(f(x)⋅1−0)+x∫0f(t)dt+f(x)(1−x)⋅1=−e−x
⇒f(x)+x∫0f(t)dt=−e−x ⋯(1)
Again differentiating w.r.t. x,
f′(x)+f(x)=e−x
⇒∫ex(f(x)+f′(x))dx=∫dx
⇒exf(x)=x+C ⋯(2)
Put x=0 in (1),
f(0)+0=−1⇒f(0)=−1
Put x=0 in (2),
f(0)=0+C⇒C=f(0)=−1
∴exf(x)=x−1
At x=10, we have exf(x)=9