Let f be a derivable function satisfying the equation ∫x0f(t)dt+∫x0t.f(x−t)dt=e−x−1
∫10f(x)dx is equal to
−e−1
Let f be a derivable function satisfying the equation ∫x0f(t)dt+∫x0t.f(x−t)dt=e−x−1
Given ∫x0f(t)dt+∫x0t.f(x−t)dt=c−x−1
or, ∫x0f(t)dt+x∫x0f(t)dt−∫x0tf(t)dt=e−x−1
Diff. both sides with respect to x, we get.
f(x)+x.f(x)+∫x0f(t)dt−xf(x)=−e−x
⇒f(x)+∫x0f(t)dt=−e−x
again diff. w.r.t to x⇒ex(f′(x))+f(x)=1 …(2)
ex.f(x)=x+c,from(1),f(0)=−1
∴∫x0f(x)dx=∫10(x−1)e−xdx=(−(x−1)e−x)10|∫10e−xdx=−1−(e−x)10=−1−(1e−1)=1e