Let f be a derivative function satisfying f(x)=x2+∫x0e−tf(x−t)dt then degree of polynomial function f(x2) is
Open in App
Solution
Given: f(x)=x2+∫x0e−tf(x−t)dt To find degree of f(x2) solution; f(0)=0+∫00e−tf(−t)dt=0f(t)=t2+∫t0e(−t)f(t−t)dt=t2+∫t0e(−t)f(0)dt=t2+0[∵f/0=0]=f(t)=t2⇒f(x)=x2∴t(x2)=x4 Hence, degree of the polynomial f(x2)=4