The correct option is D f′(0)=2
Given equation is
x∫0f(t)dt+x∫0tf(x−t)dt=−1+e−x
⇒x∫0f(t)dt+x∫0(x+0−t)f{x−(x+0−t)}dt=−1+e−x
⇒x∫0f(t)dt+xx∫0f(t)dt−x∫0tf(t)dt=−1+e−x
Differentiating both sides w.r.t. x, we get
f(x)×1+1×x∫0f(t)dt+x[f(x)×1−f(0)×0]
−[xf(x)ddx(x)]−0f(0)ddx(0)=0−e−x
⇒f(x)+x∫0f(t)dt+xf(x)−xf(x)=−e−x ... (1)
Put x=0 in (1), we get
f(0)+0=−e0=−1⇒f(0)=−1
Again diff. both sides w.r.t. x, we get
f′(x)+[f(x)×1−f(0)×0]=e−x
⇒ex[f(x)+f′(x)]=ϕ
⇒ddx[exf(x)]=ϕ
Integrating, we get exf(x)=x+c ... (2)
Put x=0 in (2) e0f(0)=0+c⇒c=1×(−1)=−1
∴ From (2),
f(x)=(x−1)e−x
∴f(2)=(2−1)e−2=e−2
f′(x)=−(x−1)e−x+e−x
⇒f′(0)=−(0−1)e0+e0=2
∴f(0)+f′(0)=−1+2=1