The correct option is B 4e
∵f′(x)=f(x) ∀ x∈R
⇒f′(x)f(x)=1
Integrating both sides, w.r.t. x, we get
f(x)=Cex
As f(1)=2 ⇒2=Ce
or, C=2e
⇒f(x)=2eex
Now, h(x)=f(f(x))
Differentiating both sides w.r.t. x, we get :
h′(x)=f′(f(x))×f′(x)
∴h′(1)=f′(f(1))×f′(1)
⇒h′(1)=f′(2)×f(1)
⇒h′(1)=2ee2×2
⇒h′(1)=4e