wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f be a differentiable function with limxf(x)=0. If y+yf(x)f(x)f(x)=0, limxy(x)=0, then
(where ydydx)

A
y+1=ef(x)+f(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y1=ef(x)+f(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y+1=ef(x)+f(x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
y1=ef(x)+f(x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C y+1=ef(x)+f(x)
dydx+yf(x)=f(x)f(x)I.F=ef(x)dx=ef(x)y.ef(x)=ef(x)f(x)f(x)dx

Let f(x)=tf(x)dx=dt
yef(x)=ettdtyef(x)=et(t1)+cyef(x)=ef(x)(f(x)1)+c

Given, limxf(x)=0,limxy(x)=0
0.e0=e0(01)+cc=1yef(x)=ef(x)(f(x)1)+1y=f(x)1+ef(x)
y+1=f(x)+ef(x)

flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon