Let f be a differential function satisfying f(x+y)=f(x)+f(y)+(ex−1)(ey−1)∀x,y∈R and f′(0)=2. Identify the correct statement(s)?
A
limx→0f(f(x))f(x)−x=4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
limx→0(f(x)+cosx)1ex−1=e2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
Number of solutions of the equation f(x)=0 is 2.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Range of the function y=f(x) is (−∞,∞).
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Alimx→0f(f(x))f(x)−x=4 Blimx→0(f(x)+cosx)1ex−1=e2 f(x+y)=f(x)+f(y)+(ex−1)(ey−1) from this, we can say f(x)=e2x−1limx→0f(f(x))f(x)−x=limx→0e2(e2x−1)−1e2x−1−x=limx→02e2(e2x−1)(2e2x)−02e2x−1=2(1)2(1)(2−1)=4limx→0(f(x)+cosx)1ex−1 It is in the form 1∞ elimx→0(f(x)+cosx)1ex−1=elimx→0(e2x+cosx−2ex−1)=elimx→0(2e2x−sinxex)=e(2(1)−01)=e2