Let f be a function 2fx,y=fxy+fyxand f1=p≠1. Then p-1∑r=1nfr=
ppn-1p-1
pnp-1
pn+1p+1
pn+1-p
Explanation for correct option:
Given data
2fx,y=fxy+fyx
f1=p≠1
Substituting y=1, we get
2fx=fx+f1x
From the given data f1=p≠1
2fx=fx+f1x2fx=fx+px2fx-fx=pxfx=px
Then,
∑r=1nfr=∑r=1npr∑r=1nfr=pn+1-pp-1p-1∑r=1nfr=pn+1-p
Hence, the correct answer is Option (D).
Let f be any function defined on R and let it satisfy the condition:fx-fy≤x-y2, ∀x,y∈R. If f0=1, then :