wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f be a function defined as f(x)=11+(tanx)m, where m is a constant. Then

A
π/40xf(x)cos2xdx=π4ln2, when m=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π/40xf(x)cos2xdx=π8ln2, when m=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
π/20f(x)dx=π4, when m=2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
π/20f(x)dx=π2, when m=2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
B π/40xf(x)cos2xdx=π8ln2, when m=1
C π/20f(x)dx=π4, when m=2
For m=1
I=π/40xf(x)cos2xdx
=π/40x(sinx+cosx)cosxdx

sinx+cosx=2cos(π4x)

I=π/40x2cos(π4x)cosxdx ...(1)

Using a0f(x)dx=a0f(ax)dx

I=π/40π4x2cos(π4x)cosxdx ...(2)

Adding eqn (1) and (2), we get

2I=π/40π42cos(π4x)cosxdx

I=π8π/4012cos(π4x)cosxdx

I=π8π/40sin(π4x+x)cos(π4x)cosxdx

I=π8π/40sin(π4x)cosx+cos(π4x)sinxcos(π4x)cosxdx

I=π8π/40[tan(π4x)+tanx]dx

π/40tan(π4x)dx=π/40tanx dx

I=π4π/40tanx dx

I=π4[ln|secx|]π/40

I=π4ln2

I=π8ln2


Now, when m=2
I=π/2011+(tanx)2dx ...(3)

Using a0f(x)dx=a0f(ax)dx

I=π/2011+(cotx)2dx

I=π/20(tanx)21+(tanx)2dx ...(4)

Adding eqn (3) and (4), we get

2I=π/201 dx

I=π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon