The correct options are
B π/4∫0xf(x)cos2xdx=π8ln2, when m=1
C π/2∫0f(x)dx=π4, when m=√2
For m=1
I=π/4∫0xf(x)cos2xdx
=π/4∫0x(sinx+cosx)cosxdx
sinx+cosx=√2cos(π4−x)
I=π/4∫0x√2cos(π4−x)cosxdx ...(1)
Using a∫0f(x)dx=a∫0f(a−x)dx
I=π/4∫0π4−x√2cos(π4−x)cosxdx ...(2)
Adding eqn (1) and (2), we get
2I=π/4∫0π4√2cos(π4−x)cosxdx
I=π8π/4∫01√2cos(π4−x)cosxdx
I=π8π/4∫0sin(π4−x+x)cos(π4−x)cosxdx
I=π8π/4∫0sin(π4−x)cosx+cos(π4−x)sinxcos(π4−x)cosxdx
I=π8π/4∫0[tan(π4−x)+tanx]dx
∵π/4∫0tan(π4−x)dx=π/4∫0tanx dx
∴I=π4π/4∫0tanx dx
⇒I=π4[ln|secx|]π/40
⇒I=π4ln√2
⇒I=π8ln2
Now, when m=√2
I′=π/2∫011+(tanx)√2dx ...(3)
Using a∫0f(x)dx=a∫0f(a−x)dx
I′=π/2∫011+(cotx)√2dx
I′=π/2∫0(tanx)√21+(tanx)√2dx ...(4)
Adding eqn (3) and (4), we get
2I′=π/2∫01 dx
⇒I′=π4