The correct options are
A Domain of f is R
C Range of f is [15,1]
f(x)=3+2sinx9−4sin2x
=3+2sinx(3+2sinx)(3−2sinx)
=13−2sinx (∵3+2sinx≠0, ∀ x∈R)
⇒f(x)=13−2sinx
Denominator >0 for all real values of x
Since, f(x) is defined for all x∈R
∴ Domain is R
We know that
−1≤sinx≤1
⇒−2≤−2sinx≤2
⇒1≤3−2sinx≤5
⇒15≤13−2sinx≤1
∴ Range is [15,1]