Given, 1−ef(x)1+ef(x)=x
f and g are inverse of each other.
So, g(f(x))=x
⇒1−ef(x)1+ef(x)=g(f(x))
∴g(x)=1−ex1+ex
g′(x)=−2ex(1+ex)2=−2ex(1+ex)−2
g′′(x)=−2[ex(1+ex)−2+ex(−2)(1+ex)−3⋅ex]
=−2[ex(1+ex)−2−2(1+ex)−3⋅(ex)2]
Now, g′(ln3)=−38
and g′′(ln3)=316
∴g′′(ln3)−g′(ln3)=316+38=916
Hence, p+q=9+16=25