The correct option is D Range of g(x) is [−1,1].
Given, 1−ef(x)1+ef(x)=x
f and g are inverse of each other.
So, g(f(x))=x
⇒1−ef(x)1+ef(x)=g(f(x))
∴g(x)=1−ex1+ex
Now, g(−x)=1−e−x1+e−x=−1−ex1+ex
⇒g(x)=−g(−x)
Hence, g(x) is an odd function.
g′(x)=−2ex(1+ex)2=−2ex(1+ex)−2
⇒g′(x)<0 ∀ x∈R
∴g(x) is strictly decreasing function and differentiable at all points.
g(x)=1−ex1+ex=21+ex−1
⇒1<1+ex<∞
⇒0<11+ex<1
⇒0<21+ex<2
⇒−1<21+ex−1<1
∴ Range of g(x) is (−1,1)