∫x0[f′(t)−sin2t]dt=∫0x[f(t)tant]dt
differentiating both side (assuming y=f(x))
∴f′(x)−sin2x=−f(x)tanxf′(x)+f(x)tanx=sin2x
this is a linear differential equation
∴I.F.=e∫tanxdx=secx⇒ysecx=∫secxsin2xdxy=−2cos2x+Ccosx
∵ curve passes through (0,2)
∴C=4
y=2−2(1+cosx)2
ymax=2