f(x+y)+f(x−y)=2f(x)f(y)
Put x=y=0, we get
f(0)+f(0)=2(f(0))2
⇒f(0)=1 [∵f(0)≠0]
Now put x=0,y=5 we get
f(5)+f(−5)=2f(0)f(5)
⇒f(−5)=f(5) [∵f(0)=1]
∴f(5)=f(−5)=10
Alternate Solution:
f(x+y)+f(x−y)=2f(x)f(y)
Put x=y=0, we get
f(0)+f(0)=2(f(0))2
⇒f(0)=1 [∵f(0)≠0]
Now put x=0, we get
f(y)+f(−y)=2f(0)f(y)
⇒f(−y)=f(y) [∵f(0)=1]
∴f(5)=f(−5)=10