wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f be a function satisfying f(0)=2,f(0)=3 and f′′(x)=f(x). Then

A
f(4)=5e812e4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
f(4)=5e8+12e4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f(4)=5e8+12e4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
f(4)=5e812e4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct options are
A f(4)=5e812e4
C f(4)=5e8+12e4
Given f′′(x)=f(x)
2f(x)f′′(x)=2f(x)f(x)ddx(f(x))2=ddx(f(x))2(f(x))2=(f(x))2+c (1)

Now, f(0)=2 and f(0)=3
From (1),
32=22+cc=5f(x)=(f(x))2+51(5)2+(f(x))2d[f(x)]=1dxln[f(x)+(f(x))2+5]=x+c1

Since f(0)=2c1=ln5
ln[f(x)+(f(x))2+5]=x+ln5ln⎢ ⎢f(x)+(f(x))2+55⎥ ⎥=xf(x)+(f(x))2+5=5ex
(f(x))2+5=(5exf(x))2
(f(x))2+5=25e2x+(f(x))210exf(x)
1=5e2x2exf(x)
f(x)=12(5exex)f(4)=12(5e4e4)
and f(4)=12(5e4+e4)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon