Let f be a integrable function over [0,a] for any real value of a. If I1=π/2∫0cosθf(sinθ+cos2θ)dθ and I2=π/2∫0sin2θf(sinθ+cos2θ)dθ, then the value of I1+I2I1 is
Open in App
Solution
Given: I1=π/2∫0cosθf(sinθ+cos2θ)dθ and I2=π/2∫0sin2θf(sinθ+cos2θ)dθ
Now, I1−I2=π/2∫0[cosθ−sin2θ]f(sinθ+cos2θ)dθ
Now, taking sinθ+cos2θ=t ⇒I1−I2=1∫1f(t)dt=0⇒I1=I2∴I1+I2I1=2