The correct option is C sum of the digits in N is 9.
Given, f(x)+f(x+12)=6 ⋯(1)
x→x+12
f(x+12)+f(x+1)=6 ⋯(2)
Equation (1)−(2), we get
f(x)−f(x+1)=0
⇒f(x)=f(x+1)
Now, N=6∫0f(x) dx
⇒N=61∫0f(x) dx
⇒N=6⎛⎜
⎜⎝1/2∫0f(x) dx+1∫1/2f(x) dx⎞⎟
⎟⎠
Put x=y+12⇒dx=dy in the second integral
⇒N=6⎛⎜⎝1/2∫0f(x) dx+1/2∫0f(y+12) dy⎞⎟⎠
⇒N=61/2∫0(f(x)+(x+12)) dx
⇒N=61/2∫06 dx=6×6×12=18
⇒N=18=21×32
Hence, number of divisors of N is 2×3=6
Sum of digits in N is 1+8=9