Let f be a non-negative function defined on the interval [0,1] .If ∫x0√1−(f′(t))2dt=∫x0f(t)dt,0≤x≤2, and f(0)=0 then,
A function f:R→R is such that f(1)=3 and f′(1)=6. Then limx→0[f(1+x)f(1)]1/x=