Solving Linear Differential Equations of First Order
Let f be a no...
Question
Let f be a non-negative function defined on the interval [0,π2] If x∫0(f′(t)−sin2t)dt=0∫xf(t)tantdt and f(0)=1, assume y=f(x) then
A
f(0)=1 is the maximum value of f
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
f(0)=1 is the minimum value of f
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
π2∫0ydx=3−π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
f(π3)=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Bf(0)=1 is the minimum value of f Cπ2∫0ydx=3−π2 Df(π3)=1 x∫0(f′(t)−sin2t)dt=0∫xf(t)tantdt Use Newton Leibnitz theorem to differentiate RHS & LHS f′(x)−sin2x=−f(x)tanx ⇒f′(x)+f(x)tanx=sin2x ⇒dydx+ytanx=sin2x Integrating factor, =e∫tanxdx=secx ⇒ysecx=∫sin2xsecxdx ⇒ycosx=−2cosx+c
Given f(0)=1 ⇒1=−2+c⇒c=3 So, f(x)=3cosx−2cos2x ⇒f(π3)=32−2×14=32−12=1 ⇒π2∫0f(x)dx=π2∫0(3cosx−cos2x−1)dx =[3sinx−sin2x2−x]π20 =3−π2
f(x)=3cosx−2cos2x f′(x)=sinx(−3+4cosx) At x=0⇒f′(0)=0
f′′(x)=−3cosx+4cos2x f′′(0)=1>0 x=0 point of local minima and the minima will be, f(0)=1