Let f be a one-one continuous function such that f(2) = 3 and f(5) = 7. Given ∫52f(x)dx=17, then the value of the definite integral ∫73f−1(x)dx equals
12
y=f(x)⇒x=f−1(y)
and dy=f′(x)dx
I=∫73f−1(x)dx=∫73f−1(y)dy=∫52x.f′(x)dx
Integrating by parts
I=x.[f(x)]52−∫52f(x)dxI=5(7)−2(3)–17I=12