Let f be a polynomial function such that f(3x)=f′(x)⋅f′′(x), for all x∈R. Then.
A
f′′(2)−f′(2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
f(2)+f′(2)=28
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f′′(2)−f(2)=4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
f(2)−f′(2)+f′′(2)=10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Af′′(2)−f′(2)=0 Let f(x)=aoxn+a1xn−1+a2xn−2+....+an−1x+an f′(x)=aonxn−1+a1(n−1)xn−2+.....+an−1 f′′(x)=aon(n−1)xn−2+a1(n−1)(n−2)xn−3+....+an−2 f(3x)=3naoxn+3n−1a1xn−1+3n−2a2xn−2+....+3an−1x+an f′(x)f′′(x)=[aonxn−1+a1(n−1)xx−2+....+an−1][aon(n−1)xn−2+a1(n−1)(n−2)xn−3+....+an−2]
Comparing highest powers of x, 3naoxn=a2o(n−1)xn−1+n−2=a2on2(n−1)x2n−3 ∴2n−3=n ⇒n=3
and 3nao=a2on2(n−1) 33=ao9(3−1) ao=2718=32 ∴f(x)=32x3+a1x2+a2x+a3 f(3x)=812x3+9a1x2+3a2x+a3 f′(x)=92x2+2a1x+a2 f′′(x)=9x+2a1