wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f be a polynomial function such that f(3x)=f(x)f′′(x), for all xR. Then.

A
f′′(2)f(2)=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
f(2)+f(2)=28
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f′′(2)f(2)=4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
f(2)f(2)+f′′(2)=10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A f′′(2)f(2)=0
Let f(x)=aoxn+a1xn1+a2xn2+....+an1x+an
f(x)=aonxn1+a1(n1)xn2+.....+an1
f′′(x)=aon(n1)xn2+a1(n1)(n2)xn3+....+an2
f(3x)=3naoxn+3n1a1xn1+3n2a2xn2+....+3an1x+an
f(x)f′′(x)=[aonxn1+a1(n1)xx2+....+an1][aon(n1)xn2+a1(n1)(n2)xn3+....+an2]

Comparing highest powers of x,
3naoxn=a2o(n1)xn1+n2=a2on2(n1)x2n3
2n3=n
n=3

and 3nao=a2on2(n1)
33=ao9(31)
ao=2718=32
f(x)=32x3+a1x2+a2x+a3
f(3x)=812x3+9a1x2+3a2x+a3
f(x)=92x2+2a1x+a2
f′′(x)=9x+2a1

812x3+9a1x2+3a2x+a3=(92x2+2a1x+a2)(9x+2a1))
812x3+9a1x2+3a2x+a3=812x3+[9a1+18a1]x2+[4a21+9a2]x+2a1a2

Comparing coefficients,
aa1=27a1
a1=0
3a2=4a21+9a2=9a2
a2=0
a3=2a1a2a3=0

f(x)=32x3
f(x)=92x2
f′′(x)=9x
f′′(2)f(2)1818=0.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon