wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f be a quadratic polynomial such that f(π)=f(π)=0 and f(π2)=3π24. If limxπf(x)cos(sinx)cosec(sinx)=mπ, then the value of m is

Open in App
Solution

f(x)=a(xπ)(x+π)
Given, f(π2)=3π24
a=1
f(x)=(π+x)(πx)

Now, limxπf(x)cos(sinx)cosec(sinx)=mπ
limxπ(π+x)(πx)tan(sinx)=mπ
limxπ(π+x)(πx)tan(sinx)sinxsinx=mπ
limxπ(π+x)(πx)sinx=mπ
limxπ(π+x)(πx)sin(πx)(πx)(πx)=mπ
2π=mπ
m=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon