wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f be a real function given by fx=x-2.
Find each of the following:
(i) fof
(ii) fofof
(iii) (fofof) (38)
(iv) f2

Also, show that fof ≠ f2 .

Open in App
Solution

fx=x-2For domain,x-20x2Domain of f=[2,)Since fis a square-root function, range of f=0,So, f:[2,)0,i fofRange of f is not a subset of the domain of f.Domainfof=x: x domain of fand fxdomain of fDomainfof=x: x [2,) and x-2[2,)Domainfof=x: x [2,) and x-22Domainfof=x: x [2,) and x-24Domainfof=x: x [2,) and x6Domainfof=x: x6Domainfof=[6, ∞)fof :[6, ∞)Rfof x=f f x=f x-2=x-2-2

ii fofof= (fof) ofWe have, f:[2,)0, and fof : [6, )RRange of f is not a subset of the domain of fof.Then, domainfofof=x: x domain of fand fxdomain of fofDomainfofof=x: x [2,) and x-2[6,)Domainfofof=x: x [2,) and x-26Domainfofof=x: x [2,) and x-236Domainfofof=x: x [2,) and x38Domainfofof=x: x38Domainfofof=[38, ∞)fof :[38,)RSo, fofof x=fof f x=fof x-2=x-2-2-2

iii We have, fofof x=x-2-2-2So, fofof 38=38-2-2-2=36-2-2=6-2-2=2-2=0

iv We have, fof=x-2-2f2x=fx×fx=x-2×x-2=x-2So, fof f2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Inequalities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon