The correct option is C tan−1√α−β=sec−1(α5)
f(x)+f(y)=1x+1y ∀ x,y∈R−{0}
Put x=y, we get
f(x)=1x
Now, I=3∫2⎛⎜
⎜
⎜⎝3x5−1x1−1x4⎞⎟
⎟
⎟⎠dx
On multiplying and dividing by 1x2,
I=3∫2⎛⎜
⎜
⎜⎝3x7−1x31x2−1x6⎞⎟
⎟
⎟⎠dx
Put 1x2−1x6=t
⇒dt=(−2x3+6x7)dx
I=1280729∫1564dtt
=12[lnt]807291564
=12ln(21037)
On comparing with 12ln(2α3β),
α=10,β=7