The correct option is D f(1)−f(−1)=2011
We have f(x)=x2+ax2+bx3
where a=1∫−1t⋅f(t) dt and b=1∫−1f(t) dt
Now, a=1∫−1t[(a+1)t2+bt3]dt
⇒a=(a+1)1∫−1t3 dt+b1∫−1t4 dt
⇒a=0+2b1∫0t4dt
⇒a=2b5 …(1)
Again b=1∫−1((a+1)t2+bt3)dt
⇒b=21∫0(a+1)t2 dt
⇒b=2(a+1)3 …(2)
From (1) and (2),
5a2=2(a+1)3
⇒a=411 and b=1011
∴1∫−1t⋅f(t)dt=411 and 1∫−1f(t)dt=1011
f(x)=(a+1)x2+bx3
Now, f(1)+f(−1)=2(a+1)=3011
And f(1)−f(−1)=2b=2011