The correct options are
A f′(x) exists for all xϵ(0,∞) and f′(x) is continuous on (0,∞) but not differentiable on (0,∞)
B f(x)=logex+∫x0√1+sintdt. for all xϵ(0,∞)
C there exists α>1 such that ∣∣f′(x)∣∣<|f(x)| for all
xϵ(α,∞)
We have f′(x)=1x+√1+sinx
Consider f(x)−f′(x)
=1nx+∫x0√1+sintdt−1x−√1+sinx
=(∫x0√1+sintdt−√1+sinx)+1nx−1x
Consider g(x)=∫x0√1+sintdt−√1+sinx
it can be proved that g(x)≥2√2−√10∀x∈(0,∞)
Now there exist some α>1 such that
1x−1nx≤2√2−√10 for all x∈(0,∞) as 1x−1nx is strictly decreasing function.
⇒g(x)≥1x−1nx