Let F be a real valued function of real and positive argument such that F(x)+3x F(1x)=2(x+1)∀x>0, then the value of F(10099) is
5050
F(x)+3x F(1x)=2(x+1)……(1)
Replacing x by 1x
F(1x)+3xF(x)=2(1x+1)x F(1x)+3F(x)=1(1+x)……(2)
On solving (1) and (2)
8F(x)=4(1+x)⇒F(x)=x+12F(10099)=101002=5050