Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x,y. If f(1)=12, then the value of f(16) is
A
16
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
8
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B8 Assuming m be an integers. f(x+(m−1)x)=f(x)+f((m−1)x) =f(x)+f(x)+f((m−2)x) =f(x)+f(x)+f(x)+f((m−3)x) . . =mf(x)+f(0).....(i) Using f(x+y)=f(x)+f(y) Putting x=0,y=0⇒f(0)=2f(0)⇒f(0)=0 ∴f(mx)=mf(x)where m is an integers⇒f(16×1)=16f(1)⇒f(16)=16×12=8