Let f be a twice differentiable function on (1,6). If f(2)=8,f′(2)=5,f′(x)≥1 and f′′(x)≥4, for all x∈(1,6), then
A
f(5)+f′(5)≥28
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
f′(5)+f′′(5)≤20
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
f(5)≤10
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
f(5)+f′(5)≤26
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Af(5)+f′(5)≥28 f(2)=8,f′(2)=5,f′(x)≥1,f′′(x)≥4∀x∈(1,6)
Using LMVT, f′′(x)=f′(5)−f′(2)5−2≥4∀x∈(1,6) ⇒f′(5)≥17⋯(1)
and f′(x)=f(5)−f(2)5−2≥1∀x∈(1,6) ⇒f(5)≥11⋯(2)
Adding (1) and (2), we get f(5)+f′(5)≥28