t2f(x)−2tf′(x)+f′′(x)=0 …(1)
Equation has two equal values of t
⇒D=0
⇒(2f′(x))2=4f(x)f′′(x)⇒f′(x)f(x)=f′′(x)f′(x)
On integrating both sides,
lnf(x)=lnf′(x)+C
Put x=0,
lnf(0)=lnf′(0)+C
⇒0=ln2+C
⇒C=−ln2
∴lnf(x)=lnf′(x)−ln2
f(x)=f′(x)2
⇒f′(x)f(x)=2
On integrating both sides,
lnf(x)=2x+k
Put x=0
lnf(0)=0+k
⇒k=0
∴lnf(x)=2x
⇒f(x)=e2x
On differentiating with respect to x,
f′(x)=2e2x
Again differentiating with respect to x,
f′′(x)=4e2x
Put the value of f(x),f′(x),f′′(x) in equation (1), we get
t2(e2x)−2t(2e2x)+4e2x=0⇒e2x(t2−4t+4)=0⇒t=2
Now, L=limx→0f(x)−1x−t2
=limx→0e2x−1x−1
=limx→02(e2x−1)2x−1
=2−1
=1