Let f be defined for all non-zero real numbers x as f(x)+2f(1x)=3x. Then the number of values of x satisfying the equation f(x)=f(−x) is
Open in App
Solution
f(x)+2f(1x)=3x⋯(1)
Replacing x by 1x, we get f(1x)+2f(x)=3(1x) ⇒2f(1x)+4f(x)=6(1x)⋯(2)
From (1) and (2), we get 3f(x)=6x−3x
Since f(x)=f(−x), ∴6x−3x=−6x+3x ⇒12x=6x ⇒x2=2 ∴x=±√2