Let f be the twice differentiable function such that f′′(x)=−f(x) and f′(x)=g(x). If h′(x)=[f(x)2+g(x)2],h(1)=8,h(0)=2, then h(2) equals to
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is C None of these We have h′(x)=[f(x)2+g(x)2] ⇒h′′(x)=2f(x)f′(x)+2g(x)g′(x) ⇒h′′(x)=2f(x)g(x)+2g(x)f′′(x)[∵g(x)=f′(x);g(x)=f′′(x)] ⇒h′′(x)=0 ⇒h′(x)=C, constant for all x∈R ⇒h(x)=xC+C1 ⇒h(0)=C1;h(1)=C+C1 ⇒C1=2;C=6 Therefore, h(x)=6x+2 ⇒h(2)=14