Let f:R→R be a function such that f(x)=x3+x2f′(1)+xf′′(2)+f′′′(3),x∈R. Then f(2) equals :
A
−4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
30
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D−2 f(x)=x3+x2f′(1)+xf′′(2)+f′′′(3) ⇒f′(x)=3x2+2xf′(1)+f′′(2)⋯(i) ⇒f′′(x)=6x+2f′(1)⋯(ii) ⇒f′′′(x)=6⋯(iii)
⇒f′′′(3)=6
Now from eqn (i) f′(1)=3+2f′(1)+f′′(2) ⇒f′(1)+f′′(2)+3=0⋯(iv)
from eqn (ii) f′′(2)=12+2f′(1) ⇒2f′(1)−f′′(2)+12=0⋯(v)
from eqn. (iv) and (v) 3f′(1)+15=0 ⇒f′(1)=−5 and f′′(2)=2
So, f(x)=x3−5x2+2x+6 ⇒f(2)=8−20+4+6=−2