The correct option is
A 0≤a≤1We have, y=x2+2x+ax2+4x+3a
⇒yx2+4xy+3ay=x2+2x+a
⇒yx2+4xy+3ay−x2−2x−a=0
⇒x2(y−1)+2x(2y−1)+3ay−a=0
Give x is real
∴ Discriminant ≥0
⇒{2(2y−1)}2−4(3ay−a)(y−1)≥0
⇒4(2y−1)2−4(3ay−a)(y−1)≥0
⇒(2y−1)2−(3ay−a)(y−1)≥0 [Divide by 4]
⇒4y2+1−4y−(3ay2−3ay−ay+a)≥0
⇒4y2+1−4y−(3ay2−4ay+a)≥0
⇒y2(4−3a)+4y(a−1)+1−a≥0
For the above equation to be always true,
(4−3a)>0 and Discriminant ≤0
⇒(4−3a)>0
⇒a<43
For, Discriminant ≤0
⇒{4(a−1)}2−4(4−3a)(1−a)≤0
⇒4×4(a−1)2−4(4−3a)(1−a)≤0
⇒4(a2+1−2a)−(4−3a)(1−a)≤0
⇒4a2+4−8a−(4−7a+3a2)≤0
⇒4a2+4−8a−4+7a−3a2≤0
⇒a2−a≤0
⇒a(a−1)≤0
aϵ[0,1]
Taking intersection of a<43 and aϵ[0,1], we get aϵ[0,1]