wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Let f defined on [0, 1] be twice differentiable such that | f"(x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1].

Open in App
Solution

If a function is continuous and differentiable and f(0) = f(1) in given domain x ∈ [0, 1],
then by Rolle's Theorem;
f'(x) = 0 for some x ∈ [0, 1]
Given: |f"(x)| ≤ 1
On integrating both sides we get,
|f'(x)| ≤ x
Now, within interval x ∈ [0, 1]
We get, |f' (x)| < 1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon