The correct options are
A f(x) is an odd funtion
B f(x) is a one-one function
C f(x) is an onto function
f(x)=(log(secx+tanx))3∀x∈(−π2,π2)
f(−x)=−f(x), hence f(x) is odd function
Let g(x)=secx+tanx∀x∈(−π2,π2)
⇒g′(x)=secx(secx+tanx)>0∀x∈(−π2,π2)
⇒g(x) is one-one function
Hence (loge(g(x)))3 is one-one function.
and g(x)∈(0,α)∀x∈(−π2,π2)
⇒log(g(x))∈R. Hence f(x) is an onto function.