Let f,g and h be functions from R to R. Show that (f+g)oh =foh+goh
To prove (f+g)oh =foh +goh
Consider
LHS =((f+g)oh)(x)=(f+g)(h(x))
=f(h(x))+g(h(x))=(foh)(x)+(goh)(x)=((foh)+(goh))(x)
∴((f+g)oh)(x)=((foh)+(goh))(x)∀x∈R
Hence, (f.g)oh=(foh)+(goh)