wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f,g and h be functions from R to R. Show that
(f+g)oh=foh+goh
(fg)oh=(foh)(goh)

Open in App
Solution

Letf(x)=x,g(x)=sinx,h(x)=logx(f+g)ohf+g=f(x)+g(x)=x+sinx(f+g)=x+sinx(f+g)h(x)=h(x)+sinh(x)(f+g)oh=logx+sinlogxfoh+gohf(x)+g(x)=x+sinxf[h(x)+g(h(x))]=h(x)+sinh(x)foh+goh=logx+sinlogx(f+g)oh=foh+goh
Letf(x)=x,g(x)=sinx,h(x)=logx(fg)ohfg=f(x)g(x)=xsinx(fg)=xsinx(fg)h(x)=h(x)sinh(x)(fg)oh=logxsinlogx(fg)oh=logxsinlogxf(x)g(x)=xsinxf[h(x)g(h(x))]=h(x)sinh(x)fohgoh=logxsinlogx(fg)oh=fohgoh

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Relation between Variables and Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon