(i)
To prove:
(f+g)oh=foh+goh
Consider:
=(f+g)(h(x))
=f(h(x))+g(h(x))
=(foh)(x)+(goh)(x)
=(foh)+(goh)(x)
∴((f+g)oh)(x)=(foh)+(goh)(x) for all x∈R
To prove: (f.g)oh=(foh).(goh)
((f.g)oh)(x)
Let f,g and h be functions from R to R. Show that (f+g)oh =foh+goh